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Sets of States and Extreme Points

Karsten Keller'
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The natural embedding of orthoposets and quantum logics, equipped with certain
sets of states, into their corresponding order-unit normed vector space is investi-
gated. Necessary (resp. sufficient) conditions are stated for the case that the
image of the embedding and the extreme points of the order interval, bounded
by 0 and the order unit, coincide. Modifications of the state space are discussed
from this point of view and the special case of a Boolean algebra is characterized.

1. INTRODUCTION

Let (P, =, 0, 1) be a partially ordered set with a greatest element 1 and
a least element 0. A unary operation *: P~ P is said to be an orthocomple-
mentation if for all p, g€ P, (01) p*~=p, (02) sup{p, p*}=1,and (03) p=<gq
implies g*=<p*. If * is an orthocomplementation, then (P, =<,*,0,1) is
called an orthoposet. One says that p, g € P are orthogonal (p L.q)if p<gq™.

(P,=,%,0,1) is said to be an orthomodular poset or a quantum logic
if for all p, g € P, (04) p =< q implies sup{p, inf{ p*, q}}. In this case one calls
P L-complete (orthogonally complete) if each set of mutually orthogonal
elements of P admits a supremum.

A state on P is defined to be a monotonically increasing positive real
function p on P with (S1) u(1) =1, (S2) u(supi=y p) =X, u(p:) if {p}1,
is a family of mutually orthogonal elements of P, for which sup_, p; exists.
If P is L-complete and (S3) for each family {p;};c; of mutually orthogonal
elements, w(sup;c; p;)=2,.; #(p;), then p is called completely additive.

Now assume that P is an orthoposet and A is a convex set of states
on P. Let V(A) be the linear span of A taken in the set of all real functions
on the orthoposet P and K(A) be the cone generated by A. If |||, is the
Minkowski functional corresponding to the absolute convex hull of A, the
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space (V(A), K(A), |||la) becomes a base-normed ordered vector space
with the base A. Let (V*(A), ||||) be the norm dual of (V(A), |:||s). By
p - pawith pa(¢) = ¢(p) for all ¢ € V(A) there is given a natural embedding
of P into V*(A). Its image is denoted by P,. If V*(A)" is the dual cone of
K(A), then (V*(A), V*(A)™, ||-|) is an order-unit Banach space with the
order unit 1,.

It is easy to see that P, is contained in the order interval [0, 1,]. The
present paper deals with the following main question: In which cases does
the set Ext[0, 1,] of the extreme points of [0, 1,] and P, coincide? This
paper continues Keller (submitted). Also see the very interesting results of
Cook (1978, 1988) and Riittimann (1977, 1985; Cook and Riittiman, 1985).

2. THE £-HAHN-JORDAN PROPERTY AND STRONG SETS
OF STATES

In this section let P be an orthoposet and A a convex set of states.

Definition 1. The set A fulfills the £-Hahn-Jordan property if, for each
¢ € V(A) and each ¢ > 0, there exist positive real numbers A, A,, elements
w1, p2€A, and a p € Psuchthat ¢ = A u;—Au, and A s (ph), A ua(p) <e.

The s-Hahn-Jordan property was defined and investigated by Cook
(1978). The following lemma is an immediate consequence of his results
and the Krein-Milman theorem:

Lemma 1. (i) A fulfills the e-Hahn-Jordan property iff[0, 1,] is equal
to the o(V*(A), V(A))-closure cl,(y«a), viay (conv P,) of the convex hull
of P,. (ii) If A fulfills the e-Hahn-Jordan property, then Ext[0,1,]<
clovxay,viay (Pa)-

Recall that A is said to be strong if, for all p,ge P, {u € Aju(p)=0}=
{nebju(q)=0} implies p=gq.

Theorem 1. If P is an orthoposet and A a strong convex set of states
on P such that P, = Ext[0, 1,], then (i) P is a *-complete orthomodular
poset; (ii) fulfills the e-Hahn-Jordan property; and (iii) each p€A is a
completely additive state.

Proof. The statements (i) and (iii) are verified in Keller (submitted).
Statement (ii) follows from Lemma 1(i) and the Krein-Milman theorem.
We want to give a sufficient condition that P,=Ext[0,1,]. For this, by
o (P, A) let us denote the weakest topology on P which makes each element
of A continuous. W

" Proposition 1. Let P be an orthoposet and A a strong convex set of
states with the e-Hahn-Jordan property such that P is o(P, A)-compact.
Then P,=Ext[0, 1,].
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Proof. Since P is o(P, A)-compact, we obtain ( V¥(A), V(A))-compact-
ness of P,. Hence, by Lemma 1(i),

Ext[0,1,] € P, (*)
For pe P let
F,={fe[0, 1,]|(Vu e A)(u(p) =0~ f(u) =0)}
N{fel0,1.](Vu e A)(u(p) =1->f(u) =1)

Since F, is a compact face of [0, 1,], by (*) there exists a g€ P with g, € F,.

Let us show that p = g, then, by the strongness of A, there is a u €A
with w(p)=1 and u(g)<1. Otherwise, if p%gqg, we have a ueA with
pn(p)=0and u(q)>0. In both cases g, £ F,, which yields a contradiction.
Hence p=q. N

Note that the conditions (i) and (iii} in the formulation of Theorem 1
are consequences of o(P, A)-compactness of P in general if P is
orthomodular. But the difference between the necessary (resp. sufficient)
conditions for Ext[0, 1,]= P, given in Theorem 1 (resp. Proposition 1) if
A is strong is unclear.

" In conclusion, using Lemma 1 and methods of Riittimann (1977) one
obtains the following result.

Proposition 2. Let P be a finite orthoposet. Then P, =Ext[0, 1,] if A
is ultrafull (Riittimann, 1977) and has the s-Hahn-Jordan property.

Note that the contrary implication is not valid in general. But, if P is
a finite orthoposet and A is ||| s-closed, then the £-Hahn-Jordan property
implies the Hahn-Jordan property. Under this condition, P,=Ext[0, 1],
iff A is ultrafull, which is essentially the main statement of Riitttmann (1977).

3. MODIFICATIONS OF THE STATE SET

Now let us consider our main question from another point of view:
What happens if the state set is changed in some sense?

If A, and A, are convex sets of states on an orthoposet P with A, < A,,
then the restriction of each element of V*(A,) to V(A,) is an element of
V*(A,). Let us denote the corresponding restriction map by R(A,, A,). It
holdsthat R(A,, A,)(P,,) = P,,. Recall that a state set A is said to be o-convex
iff, for each countable set {u,}{2,; < A and each set of positive real numbers
{A iz, with Y2 A, =1, we have ¥, Au; € A. By A we denote the o-convex
hull of a state set A, which is obviously a convex set of states.

Proposition 3. Let A be a convex set of states on an orthoposet P. Then
(i) V(A) is ||-||a-complete if A is o-convex; (ii) R(A, A) is an isometric order
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isomorphism from (V¥(A), V*(A)") onte (V*QA), V¥A)); (iii)
(V(A) I-lla) is the |-|la-completion of V(A); and (iv) the restriction of
R(AA) to [0,1,] is an affine o(V*(A), V(A)—(V*(A), V(A))-
homeomorphism onto [0, 13].

Proof. (i) Let A be o-convex and (¢;)i~, a Cauchy sequence in V(A).
One may assume that ¢; —¢;_, € 1/2' aco A, otherwise one chooses a sub-
sequence with this property. Fix nf‘), nfz)eK(A) (i=1,2,...,) with
17 )a, 7P )la=1/2" and ¢ @i 7P~ 5@, Since A is o-convex, it is
easy to see that Yo, n{", ¥ 7, nfz)e K(A) and hence

lim ¢; = g+ Z i — Zl 7P e K(A)

{ii) The norm dual ( V*{A))* of V*(A) is a base-normed ordered Banach
space, in which the base can be given by

B={pec(V*(A))*|e(14) =1, ¢ positive on V*(A)*}.

For each ¢ ¢ B, by p,(p)=¢(ps) there is given a state u, on P. Let
Ap={p,le < B}. It is not difficult to show that A< Ag. This and the fact
that each element of V(A) can be interpreted as a bounded linear functional
on (V*(A)) gives an extension of each element of V*(A) to an element of
V*(A). Since K (A) is ||-]|s-dense in K (A), the above extension is uniquely
determinated and keeps positivity. Therefore R(A, A) becomes an order
isomorphism and maps [—13, 15] onto [—1,4, 1,]. The last argument com-
pletes the proof of (ii).

(iii) Obviously, V(A) is |- || z-dense in V(A). By (i), V(A) is complete.
It remains to show that the restriction of ||-||z to V(A) and |-||» coincide.
Indeed, for each ¢ € V(A).

lella= sup If(so)l— sup R(A,Q)f(e)= sup g(o)=|ela
Jel{~15, 111 fef—13, 131 gef—14,14]
(iv) R(A A) is o(V¥(A), V(A)) - (V*(A), V(A))-continuous and, by
the o(V*(A), V(A)- -compactness of [0, 1], its restriction to [0, 15] is a
closed mapping, which implies (iv). W

Corollary 1. Let A, and A, be convex sets of states on an orthoposet
P and A,=A,. Then (i) P4, =ext[0,1,] iff P,,=Ext[0,1,,]; and (ii) A,
fulfills the e-Hahn-Jordan property iff A, fulfills the e-Hahn-Jordan
property. B :

The following proposition will be important for our further investiga-
tions.
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Proposition 4. Let P be an orthoposet and let A,, A, be convex sets of
states with A; < A,. If A, fulfills the e-Hahn-Jordan property and R =
R(A;, Ay), then (i) R is a |-||a,—||-{la,-continuous homomorphism onto
V*(A)); (ii) R is a(V*(4,), V(A,))—(V*(A)), V(A;))-continuous; and (iii)
R(V*(A)")=V*(A))" and R([0,1,,]) =[0,1,4,].

Proof. 1t is not difficult to see that R is a [|-[la,— -] s,-continuous
homomorphism and (ii) is valid. Let us verify (iii) and the surjectivity of
R. Let K =cl, (v, via, (conv Py ). Then K <[0,1,,]; hence K is com-
pact, and by (ii), R(K) becomes o(V*(4,), V(A,))-compact. Since P, <
R(K), by Lemma 1(i) one obtains [0,1,,]< R(K)< R([0,1,,)]1=[0,1,,].
This yields (iii) and that R is surjective. M

Now let A be a strong convex set of completely additive states on a
complete orthomodular lattice P. T will explain what is meant by “A is
expectational” under the above restrictions for P and A. The concept of
an expectational state set can be given, starting from a general orthoposet
and a general convex set of states, but if A is strong, this generality is not
essential. For more details see Keller (submitted) and Riittimann (1985).
A bounded Varadarajan observable on P is a mapping o from the Borel
sets B(R) on the real line R into P satisfying the following axioms:

1. If {A;}i2, is a family of mutually disjoint sets of B(R), then
0(A;) L o(A)) for i #j and sup;Z, o(A;) =02, A

2. There exists a bounded A € B(R) with o(A)=1.

By u - [idduo for u €A there is given a bounded affine function on
A which has a uniquely defined extension to an element E(o) of V*(A).

A is said to be expectational if V*(A)={E(0)lo is a bounded
Varadarajan observable}.

Theorem 2. Let P be a complete orthomodular lattice, A, an expecta-
tional, strong convex state set, and A, a unital (Cook, 1978) convex set of
states fulfilling the e-Hahn-Jordan property. If A, < A,, then R(Az, Ay} is
an isometric order isomorphism and (V(A,), ||z 3)=(V(AY), I3, i,

Proof. By Proposition 4(i), R=R(A,, A,) is a homomorphism from
V*(A;) onto V*(A,). If o is a Varadarajon observable with E(0) # 0, then
0(]0, oo[) # 0 or 0(]—0, 0[) # 0. One may assume the first statement. Since
A, is unital, there exists a u € A; with po(]0, o[) = 1. Using this fact, one
easily shows E(o0)(u)#0, hence R(E(0))(u)#0. This and Proposition
4(iii) imply that R is an isometric order isomorphism and, by Proposition
3(ii), that R(Al, Az) is an isometric order isomorphism, too. Therefore, by
Proposition 3(i), V(4,) is a closed subspace of the Banach space (V(A,),
|-]lz)- Since each element of V*(A ) has only one extension to an element
of V*(4,), (V(Ay), |l5)=(V(&y), ||5).
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For a convex set A of states on an orthoposet P let A={¢ ¢ V(A)le is
a state}.

Lemma 2. 1f A fulfills the e-Hahn-Jordan property, then (i) clj.;,(A) =
A and (ii) ||la= |z and V*(&)" = V*(&)".

Proof. (i) Let (V*(A))* be the norm dual of V*(A) and K(A) be the
set of all positive elements in (V*(A))*. One may assume V(A) to be a
subspace of (V*(A))* in the usual fashion, It is easy to see that K(A) n V(A)
is ||-}]a-closed and contains K(A); moreover,

K@)~ (A)=cly,(K(B)) (%)

Obviously, each ¢ ecl.|,(A) is a state on P, hence it is contained in A.

In the other direction, if ¢ € A, then by Lemma 1(i), ¢ can be considered
as an element of K(A); hence, by (*), ¢ ecly. (K(A)). Let (¢;)7=, be a
sequence in K(&)\{0} with lim, ... ¢; = ¢. Then lim,. ¢:/||@:lls=¢/] @ |la,
which shows ¢\ |¢|secl)., (A); hence ¢(1)/|¢]a=1. Since ¢ is a state,
<p(1) =1. Thergfore, Q= (p/”(p“AE Cl”.”A(A).

(ii) Now A< B,, where B, is the closed unit ball in (V(A), ||-]|»). This
implies aco A< aco A= B,, and hence ||||s=]||a. Then V*(A)* = V*(A)*
is obvious. W '

Corollary 2. Let P be the projection lattice of a W*-algebra without
any direct summand of type I,. Then the set of all completely additive
states is the only strong, || s-closed, and o-convex state set A on P with
P, =Ext[0, 1,].

Proof. Let A, be the set of all completely additive states on P and A,
a strong, ||-||a,-closed, and o-convex state set with P, =[0, 1, ]. Then, by
Theorem 1, A;c A, and A, has the s-Hahn-Jordan property. A, is
||l a,-closed, o-convex, and expectational by the Gleason-Christensen-
Yeadon theorem (Yeadon, 1984). Using Theorem 2, one obtains (V(4,),
I-lla,) =(V(As), || ||a,)- By Lemma 2 it follows that A,=A,. R

Finally, we want to characterize Boolean algebras under the view of
representability by extreme point posets in the above manner. Recall that
Boolean algebras can be considered as distributive (orthomodular) ortholat-
tices. Dixmier has introduced the concept of a hyperstonean compact
topological T, space. A Boolean algebra is said to be hyperstonean if its
Stonean representation space is a hyperstonean compact topological T,
space. With regard to a paper of Flachsmeyer (1979), let us give a characteri-
zation of hyperstonean Boolean algebras:

A complete Boolean algebra is hyperstonean iff it admits a unital
(convex) set of completely additive states.
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Definition 2. Let H be a complex Hilbert space and (Hilb(H), v,
A,*, {0}, H) the complete orthomodular lattice of the closed linear sub-
spaces of H, where * is the usual orthocomplementation. Let us call a
*.closed regular sublattice of Hilb(H) an H-lattice. Here a sublattice L’ of
a given complete lattice L is called regular if L' contains the supremum of
each subset of L'.

It is clear that each H-lattice is a complete orthomodular lattice itself.

Proposition 5. A Boolean algebra is hyperstonean iff there exists a
complex Hilbert space H such that P is isomorphic to a Boolean H-lattice.

Proof. Obviously, since Hilb(H) admits a strong convex set of com-
pletely additive states, each Boolean H-lattice becomes a hyperstonean
Boolean algebra.

If P is a hyperstonean Boolean algebra, then it can be considered as
the projection lattice of a commutative W*-algebra A (Takesaki, 1979).
Let (#, H) be a normal representation of A and B(H) the algebra of
bounded linear operators on H. Then 7{A) is a von Neumann algebra. We
identify Hilb(H) with the orthomodular lattice P(B(H)) of the orthogonal
projections in B(H). Since u, is a *-order isomorphism from P into
P(B(H)), it remains to show that «(P) is a regular sublattice of P(B(H)).

If {p;}ic; is a family of mutually orthogonal elements of P, then by
Theorem 2.8.4 of Pedersen (1979)

_\/I w(p;) e w(P) (*)
By transfinite induction and a lemma of Iwamura (1944) on directed nets,
one obtains V;.; w(p;) € w(P) for each upward-directed net (p;);c; in P.
Hence we only have to verify that #(p) A m(q) € w(P) forall p, q € P. Indeed,
for p,qe P,

pvg=(prg)v(prg)v(png) ()
and pA g, pAg, and p* A g are mutually orthogonal. Hence, by (+) there
exists an re P with w(r)=a(pag )va(pag)va(p'aq). Assume that
m(r)<m(pvq). Then r<pv q and there exists an s€ P\{0} with s<pv q
and slr, ie., r=s". This implies pag*, pag, p-rg=s", hence pagq*,
PAg, pAqLs, which contradicts ().
Therefore

N =mlpve)zalp)va(@=a(prg), m(parq), m(p*rq),
and we obtain #w(p)v w(q)=w(r)en(P). B

Now we give a characterization of Boolean algebras with regard to our
main question.



34 Keler

Proposition 6. Let P be an orthoposet and A a strong convex set of
states on P with P, =Ext[0, 1,].
Then P is a Boolean algebra iff (V¥*(A), V*(A)") is a lattice.

Proof. If P is a Boolean algebra, then, by Theorem 1, it becomes
hyperstonean. Hence P can be considered to be the projection lattice of a
commutative W*-algebra A. By Corollary 1, Pz =Ext[0, 1;] and then, by
Lemma 2,

Pazay= Ext[0, 1453)]

Furthermore, by Lemma 2, A* =clz (A) is a ||-||»~-closed, strong, and o-
convex set of states on P. This and Corollary 2 imply that A* is the set of
all completely additive states—say, normal measures—on P. Applying well-
known facts of functional analysis, we obtain ( V¥(A*), V*(A*)") is a lattice,
and by Proposition 3(ii) and Lemma 2(ii), ( V*(A), V*(A)7), too.

Let us verify the other implication. (Ext[0, 1,], <,*, 0, 1,) withx* =1,—x
(x € Ext[0, 1,]) is an orthoposet, which becomes a Boolean algebra if V*(A)
is a lattice (Keller, to appear). It is easy to show that p - p, is an “-order
isomorphism from P onto Ext[0, 1,], which completes the proof.

In conclusion, see Cook (1988) on the natural embedding p - p, if
V(A) is a lattice. M
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